The reliable estimation of squeeze-film damping (SQFD) is a prerequisite for the design of many microelectromechanical systems (MEMS). The proper operation of several MEMS devices (e.g. accelerometers) often depends crucially on the damping forces, i.e. the pressure level within the package. However, the simulation of SQFD is a challenging task since it is, by its nature, a distributed effect that cannot be simply lumped into an analytical model. Moreover, due to the small geometrical dimensions and especially at low pressure, gas rarefaction becomes eminent, making the modeling of SQFD on the basis of classical continuum theory a delicate issue. Commonly, the compact models presented by Bao [1] and Veijola [2] are used for the calculation of SQFD in MEMS, even though a systematic experimental validation of these models was not available for several years. Only recently, De Pasquale [3] presented a first experimental evaluation of the model by Veijola, but at normal pressure only. He showed that the relative error of the model by Veijola exceeds for some of the investigated devices a threshold of 63 %.

Squeeze-Film Damping in Perforated Microstructures: Modeling, Simulation and Pressure-Dependent Experimental Validation

Iannacci, Jacopo;
2012

Abstract

The reliable estimation of squeeze-film damping (SQFD) is a prerequisite for the design of many microelectromechanical systems (MEMS). The proper operation of several MEMS devices (e.g. accelerometers) often depends crucially on the damping forces, i.e. the pressure level within the package. However, the simulation of SQFD is a challenging task since it is, by its nature, a distributed effect that cannot be simply lumped into an analytical model. Moreover, due to the small geometrical dimensions and especially at low pressure, gas rarefaction becomes eminent, making the modeling of SQFD on the basis of classical continuum theory a delicate issue. Commonly, the compact models presented by Bao [1] and Veijola [2] are used for the calculation of SQFD in MEMS, even though a systematic experimental validation of these models was not available for several years. Only recently, De Pasquale [3] presented a first experimental evaluation of the model by Veijola, but at normal pressure only. He showed that the relative error of the model by Veijola exceeds for some of the investigated devices a threshold of 63 %.
9781466562752
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/86001
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact