We discuss how sophisticated machine learning methods may be rapidly integrated within a GIS for the development of new approaches in landscape epidemiology. A multitemporal predictive map is obtained by modeling in R, analyzing geodata and digital maps in GRASS, and managing biodata samples and weather data in PostgreSQL. In particular, we present a risk mapping system for tick-borne diseases, applied to model the risk of exposure to Lyme borreliosis and tick-borne encephalitis (TBE) in Trentino, Italian Alps

GIS and the Random Forest Predictor: Integration in R for Tick-borne Disease Risk Assessment

Furlanello, Cesare;Neteler, Markus;Merler, Stefano;Menegon, Stefano;Donini, Angela;
2003-01-01

Abstract

We discuss how sophisticated machine learning methods may be rapidly integrated within a GIS for the development of new approaches in landscape epidemiology. A multitemporal predictive map is obtained by modeling in R, analyzing geodata and digital maps in GRASS, and managing biodata samples and weather data in PostgreSQL. In particular, we present a risk mapping system for tick-borne diseases, applied to model the risk of exposure to Lyme borreliosis and tick-borne encephalitis (TBE) in Trentino, Italian Alps
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact