Very often a planning problem can be formulated as a ranking problem: i.e. to find an order relation over a set of alternatives. The ranking of a finite set of alternatives can be designed as a preference elicitation problem. While the case-based preference elicitation approach is more effective with respect to the first principle methods, still the scaling problem remains an open issue because the elicitation effort has a quadratic relation with the number of alternative cases. In this paper we propose a solution based on the machine learning techniques. We illustrate how a boosting algorithm can effectively estimate pairwise preferences and reduce the effort of the elicitation process. Experimental results, both on artificial data and a real world problem in the domain of civil defence, showed that a good trade-off can be achieved between the accuracy of the estimated preferences, and the elicitation effort of the end user

Case-Based Ranking for Decision Support Systems

Avesani, Paolo;Susi, Angelo;
2003-01-01

Abstract

Very often a planning problem can be formulated as a ranking problem: i.e. to find an order relation over a set of alternatives. The ranking of a finite set of alternatives can be designed as a preference elicitation problem. While the case-based preference elicitation approach is more effective with respect to the first principle methods, still the scaling problem remains an open issue because the elicitation effort has a quadratic relation with the number of alternative cases. In this paper we propose a solution based on the machine learning techniques. We illustrate how a boosting algorithm can effectively estimate pairwise preferences and reduce the effort of the elicitation process. Experimental results, both on artificial data and a real world problem in the domain of civil defence, showed that a good trade-off can be achieved between the accuracy of the estimated preferences, and the elicitation effort of the end user
2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/850
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact