This paper presents a novel statistical model for cross-language information retrieval. Given a written query in the source language, documents in the target language are ranked by integrating probabilities computed by two statistical models: a query-translation model, which generates most probable term-by-term translations of the query, and a query-document model, which evaluates the likelihood of each document and translation. Integration of the two scores is performed over the set of N most probable translations of the query. Experimental results with values N=1,5,10 are presented on the Italian-English bilingual track data used in the CLEF 2000 and 2001 evaluation campaigns

Statistical Cross-Language Information Retrieval using N-Best Query Translations

Federico, Marcello;Bertoldi, Nicola
2002-01-01

Abstract

This paper presents a novel statistical model for cross-language information retrieval. Given a written query in the source language, documents in the target language are ranked by integrating probabilities computed by two statistical models: a query-translation model, which generates most probable term-by-term translations of the query, and a query-document model, which evaluates the likelihood of each document and translation. Integration of the two scores is performed over the set of N most probable translations of the query. Experimental results with values N=1,5,10 are presented on the Italian-English bilingual track data used in the CLEF 2000 and 2001 evaluation campaigns
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/558
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact