The general approach for automatically driving data collection using information from previously acquired data is called active learning. Traditional active learning addresses the problem of choosing the unlabeled examples for which the class labels are queried with the goal of learning a classifier. In contrast we address the problem of active feature sampling for detecting useless features. We propose a strategy to actively sample the values of new features on class-labeled examples, with the objective of feature relevance assessment. We derive an active feature sampling algorithm from an information theoretic and statistical formulation of the problem. We present experimental results on synthetic, UCI and real world datasets to demonstrate that our active sampling algorithm can provide accurate estimates of feature relevance with lower data acquisition costs than random sampling and other previously proposed sampling algorithms.

Active Sampling for Detecting Irrelevant Features

Veeramachaneni, Sriharsha;Olivetti, Emanuele;Avesani, Paolo
2006-01-01

Abstract

The general approach for automatically driving data collection using information from previously acquired data is called active learning. Traditional active learning addresses the problem of choosing the unlabeled examples for which the class labels are queried with the goal of learning a classifier. In contrast we address the problem of active feature sampling for detecting useless features. We propose a strategy to actively sample the values of new features on class-labeled examples, with the objective of feature relevance assessment. We derive an active feature sampling algorithm from an information theoretic and statistical formulation of the problem. We present experimental results on synthetic, UCI and real world datasets to demonstrate that our active sampling algorithm can provide accurate estimates of feature relevance with lower data acquisition costs than random sampling and other previously proposed sampling algorithms.
2006
9781595933836
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/5181
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact