We report the design and characterisation of a 32x32 time to digital (TDC) converter plus single photon avalanche diode (SPAD) pixel array implemented in a 130nm imaging process. Based on a gated ring oscillator approach, the 10 bit, 50mm pitch TDC array exhibits a minimum time resolution of 50ps, with accuracy of ±0.5 LSB DNL and 4 LSB INL. Process, voltage and temperature compensation (PVT) is achieved by locking the array to a stable external clock. The resulting time correlated pixel array is a viable candidate for single photon counting (TCSPC) applications such as fluorescent lifetime imaging microscopy (FLIM), nuclear or 3D imaging and permits scaling to larger array formats.
A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging
Stoppa, David;Borghetti, Fausto;
2009-01-01
Abstract
We report the design and characterisation of a 32x32 time to digital (TDC) converter plus single photon avalanche diode (SPAD) pixel array implemented in a 130nm imaging process. Based on a gated ring oscillator approach, the 10 bit, 50mm pitch TDC array exhibits a minimum time resolution of 50ps, with accuracy of ±0.5 LSB DNL and 4 LSB INL. Process, voltage and temperature compensation (PVT) is achieved by locking the array to a stable external clock. The resulting time correlated pixel array is a viable candidate for single photon counting (TCSPC) applications such as fluorescent lifetime imaging microscopy (FLIM), nuclear or 3D imaging and permits scaling to larger array formats.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.