We present a kernel-based approach for fine-grained classification of named entities. The only training data for our algorithm is a few manually annotated entities for each class. We defined kernel functions that implicitly map entities, represented by aggregating all contexts in which they occur, into a latent semantic space derived from Wikipedia. Our method achieves a significant improvement over the state of the art for the task of populating an ontology of people, although requiring considerably less training instances than previous approaches.

Fine-Grained Classification of Named Entities Exploiting Latent Semantic Kernels

Giuliano, Claudio
2009-01-01

Abstract

We present a kernel-based approach for fine-grained classification of named entities. The only training data for our algorithm is a few manually annotated entities for each class. We defined kernel functions that implicitly map entities, represented by aggregating all contexts in which they occur, into a latent semantic space derived from Wikipedia. Our method achieves a significant improvement over the state of the art for the task of populating an ontology of people, although requiring considerably less training instances than previous approaches.
2009
9781932432299
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/4825
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact