Stiction of MEMS (MicroElectroMechanical System) switches for RF (Radio Frequency) applications is a critical issue as it may jeopardize temporarily or permanently the operability of such devices. In this work we present a novel mechanism to enable the self-recovery of RF-MEMS switches in case of stiction. It is based on the application of a restoring force on the stuck membrane, induced by the thermal stress due to self-heating of the switch itself. The heat is generated by a current driven through a high resistivity polysilicon serpentine housed underneath the anchoring points of the suspended switch. After a detailed theoretical analysis, we will report FEM-simulation results (Finite Element Method) describing the behaviour of the structure discussed in this paper.

Heat-Based Recovery Mechanism to Counteract Stiction of RF-MEMS Switches

Repchankova, Alena;Iannacci, Jacopo
2009-01-01

Abstract

Stiction of MEMS (MicroElectroMechanical System) switches for RF (Radio Frequency) applications is a critical issue as it may jeopardize temporarily or permanently the operability of such devices. In this work we present a novel mechanism to enable the self-recovery of RF-MEMS switches in case of stiction. It is based on the application of a restoring force on the stuck membrane, induced by the thermal stress due to self-heating of the switch itself. The heat is generated by a current driven through a high resistivity polysilicon serpentine housed underneath the anchoring points of the suspended switch. After a detailed theoretical analysis, we will report FEM-simulation results (Finite Element Method) describing the behaviour of the structure discussed in this paper.
2009
9782355000096
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/4584
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact