A formula is exhibited for the exact computation of Bagging classifiers when the base model adopted is k-Nearest Neighbour (k-NN). The formula holds in any dimension, does not require the extraction of bootstrap replicates, and yields an implementation of Bagging that is as fast as the computation of a single k-NN classifier. It also shows that Bagging with 1-Nearest Neighbour is perfectly equivalent to plain 1-NN

Exact Bagging with k-Nearest Neighbour Classifiers

Caprile, Bruno Giovanni;Furlanello, Cesare;Merler, Stefano
2001-01-01

Abstract

A formula is exhibited for the exact computation of Bagging classifiers when the base model adopted is k-Nearest Neighbour (k-NN). The formula holds in any dimension, does not require the extraction of bootstrap replicates, and yields an implementation of Bagging that is as fast as the computation of a single k-NN classifier. It also shows that Bagging with 1-Nearest Neighbour is perfectly equivalent to plain 1-NN
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact