This work reports the analysis, modeling and characterization of an electrostatic vibration-to-electric energy scavenger. The scavenger was manufactured by the FBK in-house foundry by using a MEMS (Micro-Electro- Mechanical System) surface micro-machining technology. Extensive finite element analyses (FEA) were performed for the compact modeling of the device and presented here. The scavenger was characterized by means of dynamical measurements as a further validation of the FE model. A random vibration analysis is also utilized for the emulation of the real device operating conditions.

Modeling and characterization of a circular-shaped energy scavenger in MEMS surface micromachining technology

Solazzi, Francesco;Iannacci, Jacopo;Faes, Alessandro;Giacomozzi, Flavio;Margesin, Benno;
2011-01-01

Abstract

This work reports the analysis, modeling and characterization of an electrostatic vibration-to-electric energy scavenger. The scavenger was manufactured by the FBK in-house foundry by using a MEMS (Micro-Electro- Mechanical System) surface micro-machining technology. Extensive finite element analyses (FEA) were performed for the compact modeling of the device and presented here. The scavenger was characterized by means of dynamical measurements as a further validation of the FE model. A random vibration analysis is also utilized for the emulation of the real device operating conditions.
2011
9780819486554
File in questo prodotto:
File Dimensione Formato  
SSPIE_2011_Solazzi.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/37982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact