Contrastive explanations, which indicate why an AI system produced one output (the target) instead of another (the foil), are widely recognized in explainable AI as more informative and interpretable than standard explanations. However, obtaining such explanations for speech-to-text (S2T) generative models remains an open challenge. Adopting a feature attribution framework, we propose the first method to obtain contrastive explanations in S2T by analyzing how specific regions of the input spectrogram influence the choice between alternative outputs. Through a case study on gender translation in speech translation, we show that our method accurately identifies the audio features that drive the selection of one gender over another.
The Unheard Alternative: Contrastive Explanations for Speech-to-Text Models
Lina Conti
;Dennis Fucci;Marco Gaido;Matteo Negri;Luisa Bentivogli
2025-01-01
Abstract
Contrastive explanations, which indicate why an AI system produced one output (the target) instead of another (the foil), are widely recognized in explainable AI as more informative and interpretable than standard explanations. However, obtaining such explanations for speech-to-text (S2T) generative models remains an open challenge. Adopting a feature attribution framework, we propose the first method to obtain contrastive explanations in S2T by analyzing how specific regions of the input spectrogram influence the choice between alternative outputs. Through a case study on gender translation in speech translation, we show that our method accurately identifies the audio features that drive the selection of one gender over another.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
