Despite significant advances in ASR, the specific acoustic cues models rely on remain unclear. Prior studies have examined such cues on a limited set of phonemes and outdated models. In this work, we apply a feature attribution technique to identify the relevant acoustic cues for a modern Conformer-based ASR system. By analyzing plosives, fricatives, and vowels, we assess how feature attributions align with their acoustic properties in the time and frequency domains, also essential for human speech perception. Our findings show that the ASR model relies on vowels’ full time spans, particularly their first two formants, with greater saliency in male speech. It also better captures the spectral characteristics of sibilant fricatives than non-sibilants and prioritizes the release phase in plosives, especially burst characteristics. These insights enhance the interpretability of ASR models and highlight areas for future research to uncover potential gaps in model robustness.

Echoes of Phonetics: Unveiling Relevant Acoustic Cues for ASR via Feature Attribution

Dennis Fucci
;
Marco Gaido
;
Matteo Negri
;
Mauro Cettolo
;
Luisa Bentivogli
2025-01-01

Abstract

Despite significant advances in ASR, the specific acoustic cues models rely on remain unclear. Prior studies have examined such cues on a limited set of phonemes and outdated models. In this work, we apply a feature attribution technique to identify the relevant acoustic cues for a modern Conformer-based ASR system. By analyzing plosives, fricatives, and vowels, we assess how feature attributions align with their acoustic properties in the time and frequency domains, also essential for human speech perception. Our findings show that the ASR model relies on vowels’ full time spans, particularly their first two formants, with greater saliency in male speech. It also better captures the spectral characteristics of sibilant fricatives than non-sibilants and prioritizes the release phase in plosives, especially burst characteristics. These insights enhance the interpretability of ASR models and highlight areas for future research to uncover potential gaps in model robustness.
File in questo prodotto:
File Dimensione Formato  
fucci25_interspeech.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/363947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact