Intrinsic statistical properties of natural uncompressed images can be used in image forensics for detecting traces of previous processing operations. In this paper, we extend the recent theoretical analysis of Benford-Fourier coefficients and propose a novel forensic detector of JPEG compression traces in images stored in an uncompressed format. The classification is based on a binary hypothesis test for which we can derive theoretically the confidence intervals, thus avoiding any training phase. Experiments on real images and comparisons with state-of-art techniques show that the proposed detector outperforms existing ones and overcomes issues due to dataset-dependency.

A Benford-Fourier JPEG compression detector

Pasquini, C.
;
2014-01-01

Abstract

Intrinsic statistical properties of natural uncompressed images can be used in image forensics for detecting traces of previous processing operations. In this paper, we extend the recent theoretical analysis of Benford-Fourier coefficients and propose a novel forensic detector of JPEG compression traces in images stored in an uncompressed format. The classification is based on a binary hypothesis test for which we can derive theoretically the confidence intervals, thus avoiding any training phase. Experiments on real images and comparisons with state-of-art techniques show that the proposed detector outperforms existing ones and overcomes issues due to dataset-dependency.
File in questo prodotto:
File Dimensione Formato  
ICIP2014.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 135.15 kB
Formato Adobe PDF
135.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/359227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact