Inorganic nanomaterials such as nanowires (NWs) and nanotubes (NTs) are explored for future flexible electronics applications due to their attributes such as high aspect ratio, enhanced surface-to-volume ratio, prominent mobility and ability to integrate on non-conventional substrates. Device performance of semiconducting NWs are demonstrated to be superior compared to the organic counterparts. Among the synthesis methods, bottom-up vapour-liquid-solid (VLS) growth mechanism playing central role for preparing wide variety of high crystal quality semiconducting NWs. However, the high temperature synthesis process prevents fabrication of NW devices directly over flexible substrates which imply the investigation of efficient transfer techniques such as dry contact printing and electric field assisted assembly. Currently, many efforts are directed to study the integration techniques of NWs from growth substrates to non-conventional receiver substrates and parameters such as transfer-yield, alignment and density. These efforts will help to utilize NWs as building blocks in future flexible electronic devices and circuits. This work focuses on VLS growth of semiconducting NWs and their transfer-printing over large area substrate to fabricate flexible electronics.

Nanomaterials processing for flexible electronics

Liu, F.;Dahiya, R.
2017-01-01

Abstract

Inorganic nanomaterials such as nanowires (NWs) and nanotubes (NTs) are explored for future flexible electronics applications due to their attributes such as high aspect ratio, enhanced surface-to-volume ratio, prominent mobility and ability to integrate on non-conventional substrates. Device performance of semiconducting NWs are demonstrated to be superior compared to the organic counterparts. Among the synthesis methods, bottom-up vapour-liquid-solid (VLS) growth mechanism playing central role for preparing wide variety of high crystal quality semiconducting NWs. However, the high temperature synthesis process prevents fabrication of NW devices directly over flexible substrates which imply the investigation of efficient transfer techniques such as dry contact printing and electric field assisted assembly. Currently, many efforts are directed to study the integration techniques of NWs from growth substrates to non-conventional receiver substrates and parameters such as transfer-yield, alignment and density. These efforts will help to utilize NWs as building blocks in future flexible electronic devices and circuits. This work focuses on VLS growth of semiconducting NWs and their transfer-printing over large area substrate to fabricate flexible electronics.
2017
9781509014125
File in questo prodotto:
File Dimensione Formato  
Nanomaterials_processing_for_flexible_electronics.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 421.69 kB
Formato Adobe PDF
421.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/356571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact