In this paper, we present a benchmark containing texts manually annotated with gustatory semantic information. We employ a FrameNet-like approach previously tested to address olfactory language, which we adapt to capture gustatory events. We then propose an exploration of the data in the benchmark to show the possible insights brought by this type of approach, addressing the investigation of emotional valence in text genres. Eventually, we present a supervised system trained with the taste benchmark for the extraction of gustatory information from historical and contemporary texts.

Benchmarking the Semantics of Taste: Towards the Automatic Extraction of Gustatory Language

Paccosi Teresa;Tonelli Sara
2024-01-01

Abstract

In this paper, we present a benchmark containing texts manually annotated with gustatory semantic information. We employ a FrameNet-like approach previously tested to address olfactory language, which we adapt to capture gustatory events. We then propose an exploration of the data in the benchmark to show the possible insights brought by this type of approach, addressing the investigation of emotional valence in text genres. Eventually, we present a supervised system trained with the taste benchmark for the extraction of gustatory information from historical and contemporary texts.
File in questo prodotto:
File Dimensione Formato  
78_main_long.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/356088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact