This paper presents device, circuit and system modelling to validate the use of neural nanowire FETs (u-NWFETs) towards a hardware-realizable Neural Network. Hardware neural networks are promising for neuromorphic computing and have many prospective applications for bi-directional interface in prosthetics, and electroceuticals etc. Device simulation of a u-NWFET has been carried out followed by circuit implementation to validate the use of silicon nanowires (Si-NWs) as neuronal elements. A system level simulation of 258 neurons (225 sensor neurons, 50 hidden layer neurons and 3 output layer neurons) has been performed to demonstrate tactile pattern recognition. Training has been carried out and validation of the trained network gives an accurate classification of a database of 50 tactile images into 3 classifiers.

Modelling of nanowire FETs based neural network for tactile pattern recognition in E-skin

Liu, F.;Vilouras, A.;Dahiya, R.
2016-01-01

Abstract

This paper presents device, circuit and system modelling to validate the use of neural nanowire FETs (u-NWFETs) towards a hardware-realizable Neural Network. Hardware neural networks are promising for neuromorphic computing and have many prospective applications for bi-directional interface in prosthetics, and electroceuticals etc. Device simulation of a u-NWFET has been carried out followed by circuit implementation to validate the use of silicon nanowires (Si-NWs) as neuronal elements. A system level simulation of 258 neurons (225 sensor neurons, 50 hidden layer neurons and 3 output layer neurons) has been performed to demonstrate tactile pattern recognition. Training has been carried out and validation of the trained network gives an accurate classification of a database of 50 tactile images into 3 classifiers.
2016
9781509029594
File in questo prodotto:
File Dimensione Formato  
Modelling_of_nanowire_FETs_based_neural_network_for_tactile_pattern_recognition_in_E-skin.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/355331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact