This Work in Progress paper introduces the design of an innovative educational system that leverages Artificial Intelligence (AI) to address challenges in physics education. The primary objective is to create a system that dynamically adapts to the individual needs and preferences of students while maintaining user-friendliness for teachers, allowing them to tailor their teaching methods. The emphasis is on fostering motivation and engagement, achieved through the implementation of a gamified virtual environment and a strong focus on personalization. Our aim is to develop a system capable of autonomously generating learning activities and constructing effective learning paths, all under the supervision and interaction of teachers. The generation of learning activities is guided by educational taxonomies that delineate and categorize the cognitive processes involved in these activities. The proposed educational system seeks to address challenges identified by Physics Education Research (PER), which offers valuable insights into how individuals learn physics and provides strategies to enhance the overall quality of physics education. Our specific focus revolves around two crucial aspects: concentrating on the conceptual understanding of physics concepts and processes, and fostering knowledge integration and coherence across various physics topics. These aspects are deemed essential for cultivating enduring knowledge and facilitating practical applications in the field of physics.

An AI-Driven Approach for Enhancing Engagement and Conceptual Understanding in Physics Education

Bucchiarone, Antonio;Schiavo, Gianluca;
2024-01-01

Abstract

This Work in Progress paper introduces the design of an innovative educational system that leverages Artificial Intelligence (AI) to address challenges in physics education. The primary objective is to create a system that dynamically adapts to the individual needs and preferences of students while maintaining user-friendliness for teachers, allowing them to tailor their teaching methods. The emphasis is on fostering motivation and engagement, achieved through the implementation of a gamified virtual environment and a strong focus on personalization. Our aim is to develop a system capable of autonomously generating learning activities and constructing effective learning paths, all under the supervision and interaction of teachers. The generation of learning activities is guided by educational taxonomies that delineate and categorize the cognitive processes involved in these activities. The proposed educational system seeks to address challenges identified by Physics Education Research (PER), which offers valuable insights into how individuals learn physics and provides strategies to enhance the overall quality of physics education. Our specific focus revolves around two crucial aspects: concentrating on the conceptual understanding of physics concepts and processes, and fostering knowledge integration and coherence across various physics topics. These aspects are deemed essential for cultivating enduring knowledge and facilitating practical applications in the field of physics.
File in questo prodotto:
File Dimensione Formato  
An_AI-Driven_Approach_for_Enhancing_Engagement_and_Conceptual_Understanding_in_Physics_Education (1).pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 239.55 kB
Formato Adobe PDF
239.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/349967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact