The experience from the Textual Entailment con- tests has revealed that an important part of entail- ment relationships requires extensive world kno w- ledge, which is unlikely to be found in a repository, because this information is bound to specific co n- texts. In this paper we present an unsupervised and language independent method of acquiring quasi- similar pairs which capture this particular type of knowledge.

Learning Quasi-Similar Pairs for Textual Entailment

Popescu, Octavian;Pianta, Emanuele;Magnini, Bernardo
2011-01-01

Abstract

The experience from the Textual Entailment con- tests has revealed that an important part of entail- ment relationships requires extensive world kno w- ledge, which is unlikely to be found in a repository, because this information is bound to specific co n- texts. In this paper we present an unsupervised and language independent method of acquiring quasi- similar pairs which capture this particular type of knowledge.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/34395
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact