We present a novel word reordering model for phrase-based statistical machine translation suited to cope with long-span word movements. In particular, reordering of nouns, verbs and adjectives is modeled by taking into account target-to-source word alignments and the distances between source as well as target words. The proposed model was applied as a set of additional feature functions to re-score N-best translation candidates generated by a statistical machine translation system featuring state-of-the-art lexicalized reordering models. Experiments showed relative BLEU score improvement up to 7.3% on the BTEC Japanese-to-English task, and up to 1.1% on the Europarl German-to-English task.

POS-based Reordering Models for Statistical Machine Translation

Cettolo, Mauro;Federico, Marcello
2007-01-01

Abstract

We present a novel word reordering model for phrase-based statistical machine translation suited to cope with long-span word movements. In particular, reordering of nouns, verbs and adjectives is modeled by taking into account target-to-source word alignments and the distances between source as well as target words. The proposed model was applied as a set of additional feature functions to re-score N-best translation candidates generated by a statistical machine translation system featuring state-of-the-art lexicalized reordering models. Experiments showed relative BLEU score improvement up to 7.3% on the BTEC Japanese-to-English task, and up to 1.1% on the Europarl German-to-English task.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/3430
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact