Unsupervised domain adaptation (UDA) plays a crucial role in object detection when adapting a source-trained detector to a target domain without annotated data. In this paper, we propose a novel and effective four-step UDA approach that leverages self-supervision and trains source and target data concurrently. We harness self-supervised learning to mitigate the lack of ground truth in the target domain. Our method consists of the following steps: (1) identify the region with the highest-confidence set of detections in each target image, which serve as our pseudo-labels; (2) crop the identified region and generate a collection of its augmented versions; (3) combine these latter into a composite image; (4) adapt the network to the target domain using the composed image. Through extensive experiments under cross-camera, cross-weather, and synthetic-to-real scenarios, our approach achieves state-of-the-art performance, improving upon the nearest competitor by more than 2% in terms of mean Average Precision (mAP).

Detect, Augment, Compose, and Adapt: Four Steps for Unsupervised Domain Adaptation in Object Detection

Mohamed L. Mekhalfi;Davide Boscaini;Fabio Poiesi
2023-01-01

Abstract

Unsupervised domain adaptation (UDA) plays a crucial role in object detection when adapting a source-trained detector to a target domain without annotated data. In this paper, we propose a novel and effective four-step UDA approach that leverages self-supervision and trains source and target data concurrently. We harness self-supervised learning to mitigate the lack of ground truth in the target domain. Our method consists of the following steps: (1) identify the region with the highest-confidence set of detections in each target image, which serve as our pseudo-labels; (2) crop the identified region and generate a collection of its augmented versions; (3) combine these latter into a composite image; (4) adapt the network to the target domain using the composed image. Through extensive experiments under cross-camera, cross-weather, and synthetic-to-real scenarios, our approach achieves state-of-the-art performance, improving upon the nearest competitor by more than 2% in terms of mean Average Precision (mAP).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/340978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact