We recently presented the MR-CKR framework to reason with knowledge overriding across contexts organized in multi-relational hierarchies. Reasoning is realized via ASP with Algebraic Measures, allowing for flexible definitions of preferences. In this paper, we show how to apply our theoretical work to autonomous-vehicle scene data: we apply MR-CKR to the problem of generating challenging scenes for autonomous vehicle learning. In practice, most of the scene data for AV learning models common situations, thus it might be difficult to capture cases where a particular situation occurs (e.g. partial occlusions of a crossing pedestrian). The MR-CKR model allows for data organization exploiting the multi-dimensionality of such data (e.g., temporal and spatial dimension). Reasoning over multiple contexts enables the verification and configuration of scenes, using the combination of different scene ontologies. We describe a framework for semantically guided data generation, based on a combination of MR-CKR and algebraic measures. The framework is implemented in a proof-of-concept prototype exemplifying some cases of scene generation.
Semantically Guided Scene Generation via Contextual Reasoning and Algebraic Measures
Loris Bozzato
;
2023-01-01
Abstract
We recently presented the MR-CKR framework to reason with knowledge overriding across contexts organized in multi-relational hierarchies. Reasoning is realized via ASP with Algebraic Measures, allowing for flexible definitions of preferences. In this paper, we show how to apply our theoretical work to autonomous-vehicle scene data: we apply MR-CKR to the problem of generating challenging scenes for autonomous vehicle learning. In practice, most of the scene data for AV learning models common situations, thus it might be difficult to capture cases where a particular situation occurs (e.g. partial occlusions of a crossing pedestrian). The MR-CKR model allows for data organization exploiting the multi-dimensionality of such data (e.g., temporal and spatial dimension). Reasoning over multiple contexts enables the verification and configuration of scenes, using the combination of different scene ontologies. We describe a framework for semantically guided data generation, based on a combination of MR-CKR and algebraic measures. The framework is implemented in a proof-of-concept prototype exemplifying some cases of scene generation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.