Backlight and spotlight images are pictures where the light sources generate very bright and very dark regions. The enhancement of such images has been poorly investigated and is particularly hard because it has to brighten the dark regions without over-enhance the bright ones. The solutions proposed till now generally perform multiple enhancements or segment the input image in dark and bright regions and enhance these latter with different functions. In both the cases, results are merged in a new image, that often must be smoothed to remove artifacts along the edges. This work describes SuPeR-B, a novel Retinex inspired image enhancer improving the quality of backligt and spotlight images without needing for multi-scale analysis, segmentation and smoothing. According to Retinex theory, SuPeR-B re-works the image channels separately and rescales the intensity of each pixel by a weighted average of intensities sampled from regular sub-windows. Since the rescaling factor depends both on spatial and intensity features, SuPeR-B acts like a bilateral filter. The experiments, carried out on public challenging data, demonstrate that SuPeR-B effectively improves the quality of backlight and spotlight images and also outperforms other state-of-the-art algorithms.

Enhancing Backlight and Spotlight Images by the Retinex-Inspired Bilateral Filter SuPeR-B

Lecca, Michela
2023-01-01

Abstract

Backlight and spotlight images are pictures where the light sources generate very bright and very dark regions. The enhancement of such images has been poorly investigated and is particularly hard because it has to brighten the dark regions without over-enhance the bright ones. The solutions proposed till now generally perform multiple enhancements or segment the input image in dark and bright regions and enhance these latter with different functions. In both the cases, results are merged in a new image, that often must be smoothed to remove artifacts along the edges. This work describes SuPeR-B, a novel Retinex inspired image enhancer improving the quality of backligt and spotlight images without needing for multi-scale analysis, segmentation and smoothing. According to Retinex theory, SuPeR-B re-works the image channels separately and rescales the intensity of each pixel by a weighted average of intensities sampled from regular sub-windows. Since the rescaling factor depends both on spatial and intensity features, SuPeR-B acts like a bilateral filter. The experiments, carried out on public challenging data, demonstrate that SuPeR-B effectively improves the quality of backlight and spotlight images and also outperforms other state-of-the-art algorithms.
2023
978-3-031-25476-5
978-3-031-25477-2
File in questo prodotto:
File Dimensione Formato  
visapp-extension_ML.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 426.67 kB
Formato Adobe PDF
426.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/336207
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact