Events are structured entities involving different components (e.g, the participants, their roles etc.) and their relations. Structured events are typically defined in terms of (a subset of) simpler, atomic events and a set of temporal relation between them. Temporal Event Detection (TED) is the task of detecting structured and atomic events within data streams, most often text or video sequences, and has numerous applications, from video surveillance to sports analytics. Existing deep learning approaches solve TED task by implicitly learning the temporal correlations among events from data. As consequence, these approaches often fail in ensuring a consistent prediction in terms of the relationship between structured and atomic events. On the other hand, neuro-symbolic approaches have shown their capability to constrain the output of the neural networks to be consistent with respect to the background knowledge of the domain. In this paper, we propose a neuro-symbolic approach for TED in a real world scenario involving sports activities. We show how by incorporating simple knowledge involving the relative order of atomic events and constraints on their duration, the approach substantially outperforms a fully neural solution in terms of recognition accuracy, when little or even no supervision is available on the atomic events.
A Neuro-Symbolic Approach for Real-World Event Recognition from Weak Supervision
Gianluca Apriceno
;Luciano Serafini
2022-01-01
Abstract
Events are structured entities involving different components (e.g, the participants, their roles etc.) and their relations. Structured events are typically defined in terms of (a subset of) simpler, atomic events and a set of temporal relation between them. Temporal Event Detection (TED) is the task of detecting structured and atomic events within data streams, most often text or video sequences, and has numerous applications, from video surveillance to sports analytics. Existing deep learning approaches solve TED task by implicitly learning the temporal correlations among events from data. As consequence, these approaches often fail in ensuring a consistent prediction in terms of the relationship between structured and atomic events. On the other hand, neuro-symbolic approaches have shown their capability to constrain the output of the neural networks to be consistent with respect to the background knowledge of the domain. In this paper, we propose a neuro-symbolic approach for TED in a real world scenario involving sports activities. We show how by incorporating simple knowledge involving the relative order of atomic events and constraints on their duration, the approach substantially outperforms a fully neural solution in terms of recognition accuracy, when little or even no supervision is available on the atomic events.File | Dimensione | Formato | |
---|---|---|---|
LIPIcs-TIME-2022-12.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.