This paper is a description of our participation in the Multi-document Summarization for Literature Review (MSLR) Shared Task, in which we explore summarization models to create an automatic review of scientific results. Rather than maximizing the metrics using expensive computational models, we placed ourselves in a situation of scarce computational resources and explore the limits of a base sequence to sequence models (thus with a limited input length) to the task. Although we explore methods to feed the abstractive model with salient sentences only (using a first extractive step), we find the results still need some improvements.

Exploring the limits of a base BART for multi-document summarization in the medical domain

Casola Silvia;
2022-01-01

Abstract

This paper is a description of our participation in the Multi-document Summarization for Literature Review (MSLR) Shared Task, in which we explore summarization models to create an automatic review of scientific results. Rather than maximizing the metrics using expensive computational models, we placed ourselves in a situation of scarce computational resources and explore the limits of a base sequence to sequence models (thus with a limited input length) to the task. Although we explore methods to feed the abstractive model with salient sentences only (using a first extractive step), we find the results still need some improvements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/335607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact