In applied sciences it is often required to model and supervise temporal evolution of populations via dynamical systems. In this paper, we focus on the problem of approximating the basins of attraction of such models for each stable equilibrium point. We propose to reconstruct the basins via an implicit interpolant using stable radial bases, obtaining the surfaces by partitioning the phase space into disjoint regions. An application to a competition model presenting jointly three stable equilibria is considered.

Approximating basins of attraction for dynamical systems via stable radial bases

Santin, Gabriele
Membro del Collaboration Group
2016-01-01

Abstract

In applied sciences it is often required to model and supervise temporal evolution of populations via dynamical systems. In this paper, we focus on the problem of approximating the basins of attraction of such models for each stable equilibrium point. We propose to reconstruct the basins via an implicit interpolant using stable radial bases, obtaining the surfaces by partitioning the phase space into disjoint regions. An application to a competition model presenting jointly three stable equilibria is considered.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/334921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact