Aerial triangulation (AT) has reached outstanding progress in the last decades, and now fully automated solutions for nadir and oblique images are available. Usually, image correspondences (tie points) are found using hand-crafted methods, such as SIFT or its variants. But in the last years, there were many investigations and developments to promote the use of machine and deep learning solutions within the photogrammetric processing pipeline. The paper explores learning-based methods for the extraction of tie points in aerial image blocks. Image correspondences are used to perform aerial triangulation (AT) and successively generate dense point clouds. Two different datasets are used to compare conventional hand-crafted detector/descriptor methods with respect to learning-based methods. Accuracy analyses are performed using GCPs as well as ground truth LiDAR point clouds. Results confirm the potential of learning-based methods in finding reliable image correspondences in the aerial block, still showing space for improvements due to camera rotations.

Aerial triangulation with learning-based tie points

Remondino, F.;Morelli, L.;Stathopoulou, E.;
2022

Abstract

Aerial triangulation (AT) has reached outstanding progress in the last decades, and now fully automated solutions for nadir and oblique images are available. Usually, image correspondences (tie points) are found using hand-crafted methods, such as SIFT or its variants. But in the last years, there were many investigations and developments to promote the use of machine and deep learning solutions within the photogrammetric processing pipeline. The paper explores learning-based methods for the extraction of tie points in aerial image blocks. Image correspondences are used to perform aerial triangulation (AT) and successively generate dense point clouds. Two different datasets are used to compare conventional hand-crafted detector/descriptor methods with respect to learning-based methods. Accuracy analyses are performed using GCPs as well as ground truth LiDAR point clouds. Results confirm the potential of learning-based methods in finding reliable image correspondences in the aerial block, still showing space for improvements due to camera rotations.
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLIII-B2-2022-77-2022.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/334048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact