Wireless sensor industry is driven by challenging paradigm of the Internet of things (IoT) devices and the 5th generation of wireless communications (5G). However, the near field devices have a lot of potential due to their low-power consumption, with the downside of covering a typically shorter range. This paper addresses the challenge of increasing the range by utilizing a modulated scattering technique (MST)-based wireless sensor integrated with a micro-switch realized in microelectromechanical systems (MEMS) technology for radio frequency (RF) applications. Our hybrid MST-RF-MEMS sensor prototype has been reviewed in real-time outdoor scenarios for environmental parameter sensing as well as for an indoor air quality monitoring system. The employed RF-MEMS switch is highly miniaturized and exhibits good performances and RF characteristics for frequencies up to 110 GHz. Numerically designed proposed MST-RF-MEMS prototype sensor has been fabricated and experimentally assessed. The achieved results are adequate and prove that the prototype RF-MEMS based sensor significantly increases the addressed communication range. The integration of the MST and RF-MEMS switch in the sensor system reveals its essential role for designing the next generation near field sensors in the millimetre and sub-millimetre frequency bands, where standard RF switches are unable to operate.

Modulated Scattering Technique (MST) Devices Hybridized with RF-MEMS Micro-switches for Next Generation IoT and 5G Smart Sensors

J. Iannacci
Writing – Review & Editing
2023-01-01

Abstract

Wireless sensor industry is driven by challenging paradigm of the Internet of things (IoT) devices and the 5th generation of wireless communications (5G). However, the near field devices have a lot of potential due to their low-power consumption, with the downside of covering a typically shorter range. This paper addresses the challenge of increasing the range by utilizing a modulated scattering technique (MST)-based wireless sensor integrated with a micro-switch realized in microelectromechanical systems (MEMS) technology for radio frequency (RF) applications. Our hybrid MST-RF-MEMS sensor prototype has been reviewed in real-time outdoor scenarios for environmental parameter sensing as well as for an indoor air quality monitoring system. The employed RF-MEMS switch is highly miniaturized and exhibits good performances and RF characteristics for frequencies up to 110 GHz. Numerically designed proposed MST-RF-MEMS prototype sensor has been fabricated and experimentally assessed. The achieved results are adequate and prove that the prototype RF-MEMS based sensor significantly increases the addressed communication range. The integration of the MST and RF-MEMS switch in the sensor system reveals its essential role for designing the next generation near field sensors in the millimetre and sub-millimetre frequency bands, where standard RF switches are unable to operate.
2023
978-981-19-2308-1
File in questo prodotto:
File Dimensione Formato  
Select_Proc_of_MNDCS_2022_ch_41_Donelli.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.07 MB
Formato Adobe PDF
6.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/333948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact