The recent interest in the installation of micro-grids in developing countries led researchers to the investigation of different renewable energy concepts to the strongly decentralized ("localized") generation of electric and thermal energy in remote locations. Among the different technologies proposed, Solar-powered Organic Rankine Cycle (S-ORC) results as a promising option for the combined production of heat and power, since it can reach fairly high electrical efficiencies within rather low heat source temperatures (350-500 K). This work presents a performance assessment of a small-scale S-ORC system capable of producing 10KWe. The system consists of an array of solar collectors and an Organic Rankine Cycle engine. The capability of the aforementioned system to produce combined heat and power at various latitudes and at different heat source temperatures is investigated. The paper is organized as follows. First, the mathematical model of the S-ORC system is presented. Then, the size and cost of the solar collector are evaluated, based on different inlet temperature for the heat source. This study highlights the potential of S-ORC systems in providing thermal and electrical energy in off-grid applications.
Performance assessment of a solar-powered Organic Rankine Cycle for combined heat and power generation in small size rural applications
Luca Pratticò;
2018-01-01
Abstract
The recent interest in the installation of micro-grids in developing countries led researchers to the investigation of different renewable energy concepts to the strongly decentralized ("localized") generation of electric and thermal energy in remote locations. Among the different technologies proposed, Solar-powered Organic Rankine Cycle (S-ORC) results as a promising option for the combined production of heat and power, since it can reach fairly high electrical efficiencies within rather low heat source temperatures (350-500 K). This work presents a performance assessment of a small-scale S-ORC system capable of producing 10KWe. The system consists of an array of solar collectors and an Organic Rankine Cycle engine. The capability of the aforementioned system to produce combined heat and power at various latitudes and at different heat source temperatures is investigated. The paper is organized as follows. First, the mathematical model of the S-ORC system is presented. Then, the size and cost of the solar collector are evaluated, based on different inlet temperature for the heat source. This study highlights the potential of S-ORC systems in providing thermal and electrical energy in off-grid applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.