Transfer learning, particularly approaches that combine multi-task learning with pre-trained contextualized embeddings and fine-tuning, have advanced the field of Natural Language Processing tremendously in recent years. In this paper we present MaChAmp, a toolkit for easy fine-tuning of contextualized embeddings in multi-task settings. The benefits of MaChAmp are its flexible configuration options, and the support of a variety of natural language processing tasks in a uniform toolkit, from text classification and sequence labeling to dependency parsing, masked language modeling, and text generation.

Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in NLP

Ramponi, Alan;
2021-01-01

Abstract

Transfer learning, particularly approaches that combine multi-task learning with pre-trained contextualized embeddings and fine-tuning, have advanced the field of Natural Language Processing tremendously in recent years. In this paper we present MaChAmp, a toolkit for easy fine-tuning of contextualized embeddings in multi-task settings. The benefits of MaChAmp are its flexible configuration options, and the support of a variety of natural language processing tasks in a uniform toolkit, from text classification and sequence labeling to dependency parsing, masked language modeling, and text generation.
File in questo prodotto:
File Dimensione Formato  
2021.eacl-demos.22.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 559.07 kB
Formato Adobe PDF
559.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/331006
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact