Uncontrolled refraction of optical rays in underwater photogrammetry is known to reduce its accuracy potential. Several strategies have been proposed aiming at restoring the accuracy to levels comparable with photogrammetry applied in air. These methods are mainly based on rigours modelling of the refraction phenomenon or empirical iterative refraction corrections. The authors of this contribution have proposed two mitigation strategies of image residuals systematic patterns in the image plane: (i) empirical weighting of image observations as function of their radial position; (ii) iterative look-up table corrections computed in a squared grid. Here, a novel approach is developed. It explicitly takes into account the object point-to-camera distance dependent error introduced by refraction in multimedia photogrammetry. A polynomial correction function is iteratively computed to correct the image residuals clustered in radial slices in the image plane as function of the point-to-camera distance. The effectiveness of the proposed method is demonstrated by simulations that allow to: (i) separate the geometric error under investigation from other effects not easily modellable and (ii) have reliable reference data against which to assess the accuracy of the result.
Bundle adjustment with polynominal point-to-camera distance dependent corrections for underwater photogrammetry
Menna, F.;
2021-01-01
Abstract
Uncontrolled refraction of optical rays in underwater photogrammetry is known to reduce its accuracy potential. Several strategies have been proposed aiming at restoring the accuracy to levels comparable with photogrammetry applied in air. These methods are mainly based on rigours modelling of the refraction phenomenon or empirical iterative refraction corrections. The authors of this contribution have proposed two mitigation strategies of image residuals systematic patterns in the image plane: (i) empirical weighting of image observations as function of their radial position; (ii) iterative look-up table corrections computed in a squared grid. Here, a novel approach is developed. It explicitly takes into account the object point-to-camera distance dependent error introduced by refraction in multimedia photogrammetry. A polynomial correction function is iteratively computed to correct the image residuals clustered in radial slices in the image plane as function of the point-to-camera distance. The effectiveness of the proposed method is demonstrated by simulations that allow to: (i) separate the geometric error under investigation from other effects not easily modellable and (ii) have reliable reference data against which to assess the accuracy of the result.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.