Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource-rich conditions. However, evaluations using real-world lowresource languages still result in unsatisfactory performance. This work proposes a novel zeroshot NMT modeling approach that learns without the now-standard assumption of a pivot language sharing parallel data with the zero-shot source and target languages. Our approach is based on three stages: initialization from any pre-trained NMT model observing at least the target language, augmentation of source sides leveraging target monolingual data, and learning to optimize the initial model to the zero-shot pair, where the latter two constitute a selflearning cycle. Empirical findings involving four diverse (in terms of a language family, script and relatedness) zero-shot pairs show the effectiveness of our approach with up to +5.93 BLEU improvement against a supervised bilingual baseline. Compared to unsupervised NMT, consistent improvements are observed even in a domain-mismatch setting, attesting to the usability of our method.
Zero-Shot Neural Machine Translation with Self-Learning Cycle
Surafel M. Lakew;Matteo Negri;Marco Turchi
2021-01-01
Abstract
Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource-rich conditions. However, evaluations using real-world lowresource languages still result in unsatisfactory performance. This work proposes a novel zeroshot NMT modeling approach that learns without the now-standard assumption of a pivot language sharing parallel data with the zero-shot source and target languages. Our approach is based on three stages: initialization from any pre-trained NMT model observing at least the target language, augmentation of source sides leveraging target monolingual data, and learning to optimize the initial model to the zero-shot pair, where the latter two constitute a selflearning cycle. Empirical findings involving four diverse (in terms of a language family, script and relatedness) zero-shot pairs show the effectiveness of our approach with up to +5.93 BLEU improvement against a supervised bilingual baseline. Compared to unsupervised NMT, consistent improvements are observed even in a domain-mismatch setting, attesting to the usability of our method.File | Dimensione | Formato | |
---|---|---|---|
2021.mtsummit-loresmt.10.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
551.43 kB
Formato
Adobe PDF
|
551.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.