The audio segmentation mismatch between training data and those seen at run-time is a major problem in direct speech translation. Indeed, while systems are usually trained on manually segmented corpora, in real use cases they are often presented with continuous audio requiring automatic (and sub-optimal) segmentation. After comparing existing techniques (VAD-based, fixed-length and hybrid segmentation methods), in this paper we propose enhanced hybrid solutions to produce better results without sacrificing latency. Through experiments on different domains and language pairs, we show that our methods outperform all the other techniques, reducing by at least 30% the gap between the traditional VADbased approach and optimal manual segmentation.
Beyond Voice Activity Detection: Hybrid Audio Segmentation for Direct Speech Translation
Gaido Marco;Negri Matteo;Cettolo Mauro;Turchi Marco
2021-01-01
Abstract
The audio segmentation mismatch between training data and those seen at run-time is a major problem in direct speech translation. Indeed, while systems are usually trained on manually segmented corpora, in real use cases they are often presented with continuous audio requiring automatic (and sub-optimal) segmentation. After comparing existing techniques (VAD-based, fixed-length and hybrid segmentation methods), in this paper we propose enhanced hybrid solutions to produce better results without sacrificing latency. Through experiments on different domains and language pairs, we show that our methods outperform all the other techniques, reducing by at least 30% the gap between the traditional VADbased approach and optimal manual segmentation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.