Recent natural language learning research has shown that structural kernels can be effectively used to induce accurate models of linguistic phenomena. In this paper, we show that the above properties hold on a novel task related to predicate argument classification. A tree kernel for selecting the subtrees which encodes argument structures is applied. Experiments with Support Vector Machines on large data sets (i.e. the PropBank collection) show that such kernel improves the recognition of argument boundaries.

Engineering of Syntactic Features for Shallow Semantic Parsing

Coppola, Bonaventura;Pighin, Daniele;
2005-01-01

Abstract

Recent natural language learning research has shown that structural kernels can be effectively used to induce accurate models of linguistic phenomena. In this paper, we show that the above properties hold on a novel task related to predicate argument classification. A tree kernel for selecting the subtrees which encodes argument structures is applied. Experiments with Support Vector Machines on large data sets (i.e. the PropBank collection) show that such kernel improves the recognition of argument boundaries.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/3257
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact