Legal texts express conditions in natural language describing what is permitted, forbidden or mandatory in the context they regulate. Despite the numerous approaches tackling the problem of moving from a natural language legal text to the respective set of machine-readable conditions, results are still unsatisfiable and it remains a major open challenge. In this paper, we propose a preliminary approach which combines different Natural Language Processing techniques towards the extraction of rules from legal documents. More precisely, we combine the linguistic information provided by WordNet together with a syntax-based extraction of rules from legal texts, and a logic-based extraction of dependencies between chunks of such texts. Such a combined approach leads to a powerful solution towards the extraction of machine-readable rules from legal documents. We evaluate the proposed approach over the Australian " Telecommunications consumer protections code " .
Combining NLP Approaches for Rule Extraction from Legal Documents
Dragoni, Mauro;Rizzi, Williams;
2016-01-01
Abstract
Legal texts express conditions in natural language describing what is permitted, forbidden or mandatory in the context they regulate. Despite the numerous approaches tackling the problem of moving from a natural language legal text to the respective set of machine-readable conditions, results are still unsatisfiable and it remains a major open challenge. In this paper, we propose a preliminary approach which combines different Natural Language Processing techniques towards the extraction of rules from legal documents. More precisely, we combine the linguistic information provided by WordNet together with a syntax-based extraction of rules from legal texts, and a logic-based extraction of dependencies between chunks of such texts. Such a combined approach leads to a powerful solution towards the extraction of machine-readable rules from legal documents. We evaluate the proposed approach over the Australian " Telecommunications consumer protections code " .I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.