Neural-based models have achieved outstanding performance on slot filling and intent classification, when fairly large in-domain training data are available. However, as new domains are frequently added, creating sizeable data is expensive. We show that lightweight augmentation, a set of augmentation methods involving word span and sentence level operations, alleviates data scarcity problems. Our experiments on limited data settings show that lightweight augmentation yields significant performance improvement on slot filling on the ATIS and SNIPS datasets, and achieves competitive performance with respect to more complex, state-of-the-art, augmentation approaches. Furthermore, lightweight augmentation is also beneficial when combined with pre-trained LM-based models, as it improves BERT-based joint intent and slot filling models.
Simple is Better! Lightweight Data Augmentation for Low Resource Slot Filling and Intent Classification
samuel louvan;bernardo magnini
2020-01-01
Abstract
Neural-based models have achieved outstanding performance on slot filling and intent classification, when fairly large in-domain training data are available. However, as new domains are frequently added, creating sizeable data is expensive. We show that lightweight augmentation, a set of augmentation methods involving word span and sentence level operations, alleviates data scarcity problems. Our experiments on limited data settings show that lightweight augmentation yields significant performance improvement on slot filling on the ATIS and SNIPS datasets, and achieves competitive performance with respect to more complex, state-of-the-art, augmentation approaches. Furthermore, lightweight augmentation is also beneficial when combined with pre-trained LM-based models, as it improves BERT-based joint intent and slot filling models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.