This paper introduces a novel method for estimation of snow/no-snow labels for cloud-obscured pixels in order to enable an accurate mapping of the snow-covered area (SCA) in time series. The proposed method leverages the embedded information in multitemporal correlation between the presence/absence of snow and environmental factors including the topographical elevation, date of acquisition, and the cloud obscuration duration. The proposed method is built upon three main steps: i) classification of single date images into three classes (snow, no-snow, and cloud), ii) estimation of conditional probabilities of class-transition in relation with the environmental factors, and iii) prediction of the snow/no-snow labels for the cloud-obscured pixels. We validated the proposed method on daily MODIS images acquired over 10 years in a mountain area located in Italy and Austria. The proposed method yielded SCA improved maps compared to a standard method of assigning labels beneath the clouds.

A Novel Approach to Snow Coverage Retrieval Under Cloud-Obscured Pixels Based on Multitemporal Correlation

Niroumand-Jadidi, Milad;Bovolo, Francesca
2019-01-01

Abstract

This paper introduces a novel method for estimation of snow/no-snow labels for cloud-obscured pixels in order to enable an accurate mapping of the snow-covered area (SCA) in time series. The proposed method leverages the embedded information in multitemporal correlation between the presence/absence of snow and environmental factors including the topographical elevation, date of acquisition, and the cloud obscuration duration. The proposed method is built upon three main steps: i) classification of single date images into three classes (snow, no-snow, and cloud), ii) estimation of conditional probabilities of class-transition in relation with the environmental factors, and iii) prediction of the snow/no-snow labels for the cloud-obscured pixels. We validated the proposed method on daily MODIS images acquired over 10 years in a mountain area located in Italy and Austria. The proposed method yielded SCA improved maps compared to a standard method of assigning labels beneath the clouds.
2019
978-1-5386-9154-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/320206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact