The self-management of nutritional diseases requires a system that combines food tracking with the potential risks of food categories on people’s health based on their personal health records (PHRs). The challenges range from the design of an effective food image classification strategy to the development of a full-fledged knowledge-based system. This maps the results of the classification strategy into semantic information that can be exploited for reasoning. However, current works mainly address the single challenges separately without their integration into a whole pipeline. In this paper, we propose a new end-to-end semantic platform where: (i) the classification strategy aims to extract food categories from food pictures; (ii) an ontology is used for detecting the risk factors of food categories for specific diseases; (iii) the Linked Open Data (LOD) Cloud is queried for extracting information concerning related diseases and comorbidities; and, (iv) information from the users’ PHRs are exploited for generating proper personal feedback. Experiments are conducted on a new publicly released dataset. Quantitative and qualitative evaluations, from two living labs, demonstrate the effectiveness and the suitability of the proposed approach.

An End-to-End Semantic Platform for Nutritional Diseases Management

Donadello, Ivan;Dragoni, Mauro
2019-01-01

Abstract

The self-management of nutritional diseases requires a system that combines food tracking with the potential risks of food categories on people’s health based on their personal health records (PHRs). The challenges range from the design of an effective food image classification strategy to the development of a full-fledged knowledge-based system. This maps the results of the classification strategy into semantic information that can be exploited for reasoning. However, current works mainly address the single challenges separately without their integration into a whole pipeline. In this paper, we propose a new end-to-end semantic platform where: (i) the classification strategy aims to extract food categories from food pictures; (ii) an ontology is used for detecting the risk factors of food categories for specific diseases; (iii) the Linked Open Data (LOD) Cloud is queried for extracting information concerning related diseases and comorbidities; and, (iv) information from the users’ PHRs are exploited for generating proper personal feedback. Experiments are conducted on a new publicly released dataset. Quantitative and qualitative evaluations, from two living labs, demonstrate the effectiveness and the suitability of the proposed approach.
2019
978-3-030-30795-0
978-3-030-30796-7
File in questo prodotto:
File Dimensione Formato  
An_end-to-end_Semantic_Platform_Nutritional_Diseases_Management.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 553.43 kB
Formato Adobe PDF
553.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/319872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact