We present NuRV, an extension of the nuXmv model checker for assumption-based LTL runtime verification with partial observability and resets. The tool provides some new commands for online/offline monitoring and code generations into standalone monitor code. Using the online/offline monitor, LTL properties can be verified incrementally on finite traces from the system under scrutiny. The code generation currently supports C, C++, Common Lisp and Java, and is extensible. Furthermore, from the same internal monitor automaton, the monitor can be generated into SMV modules, whose characteristics can be verified by Model Checking using nuXmv. We show the architecture, functionalities and some use scenarios of NuRV, and we compare the performance of generated monitor code (in Java) with those generated by a similar tool, RV-Monitor. We show that, using a benchmark from Dwyer’s LTL patterns, besides the capacity of generating monitors for long LTL formulae, our Java-based monitors are about 200x faster than RV-Monitor at generation-time and 2–5x faster at runtime.

NuRV: a nuXmv Extension for Runtime Verification

Alessandro Cimatti;Chun Tian;Stefano Tonetta
2019

Abstract

We present NuRV, an extension of the nuXmv model checker for assumption-based LTL runtime verification with partial observability and resets. The tool provides some new commands for online/offline monitoring and code generations into standalone monitor code. Using the online/offline monitor, LTL properties can be verified incrementally on finite traces from the system under scrutiny. The code generation currently supports C, C++, Common Lisp and Java, and is extensible. Furthermore, from the same internal monitor automaton, the monitor can be generated into SMV modules, whose characteristics can be verified by Model Checking using nuXmv. We show the architecture, functionalities and some use scenarios of NuRV, and we compare the performance of generated monitor code (in Java) with those generated by a similar tool, RV-Monitor. We show that, using a benchmark from Dwyer’s LTL patterns, besides the capacity of generating monitors for long LTL formulae, our Java-based monitors are about 200x faster than RV-Monitor at generation-time and 2–5x faster at runtime.
978-3-030-32079-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/319572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact