In this paper, we propose an automated segmentation approach based on a deep two-dimensional fully convolutional neural network to segment brain multiple sclerosis lesions from multimodal magnetic resonance images. The proposed model is made as a combination of two deep subnetworks. An encoding network extracts different feature maps at various resolutions. A decoding part upconvolves the feature maps combining them through shortcut connections during an upsampling procedure. To the best of our knowledge, the proposed model is the first slice-based fully convolutional neural network for the purpose of multiple sclerosis lesion segmentation. We evaluated our network on a freely available dataset from ISBI MS challenge with encouraging results from a clinical perspective.

Deep 2D Encoder-Decoder Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation in Brain MRI

Sona, Diego
2019-01-01

Abstract

In this paper, we propose an automated segmentation approach based on a deep two-dimensional fully convolutional neural network to segment brain multiple sclerosis lesions from multimodal magnetic resonance images. The proposed model is made as a combination of two deep subnetworks. An encoding network extracts different feature maps at various resolutions. A decoding part upconvolves the feature maps combining them through shortcut connections during an upsampling procedure. To the best of our knowledge, the proposed model is the first slice-based fully convolutional neural network for the purpose of multiple sclerosis lesion segmentation. We evaluated our network on a freely available dataset from ISBI MS challenge with encouraging results from a clinical perspective.
2019
978-3-030-11725-2
978-3-030-11726-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/317758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact