SixNy/a-Si/SixNy thin film RF-MEMS switches were fabricated by unconventional PECVD process using surface micromachining approach. The mechanical properties of tri-layer were measured by nanoindentation and wafer curvature method. Deflections of switches clamped on two opposite edges were measured by a profilometer applying increasing quasi-point pressure loads. Finite Element Analysis (FEA) was used to study the mechanical behavior of clamped-clamped switches. An analytical solution was developed and validated, numerically and experimentally, to describe the load-deflection response of perforated membranes to quasi-point loads. The proposed function was used to determine the internal stress of the investigated membranes; the relative error between the predicted and calculated stress values was in the range 2.1–8.5%.

Load-Deflection Behavior of RF-MEMS Switches: FEA and Analytical Modeling for Prediction of Mechanical Properties

De Pascali, C.
;
Bagolini, A.;
2018-01-01

Abstract

SixNy/a-Si/SixNy thin film RF-MEMS switches were fabricated by unconventional PECVD process using surface micromachining approach. The mechanical properties of tri-layer were measured by nanoindentation and wafer curvature method. Deflections of switches clamped on two opposite edges were measured by a profilometer applying increasing quasi-point pressure loads. Finite Element Analysis (FEA) was used to study the mechanical behavior of clamped-clamped switches. An analytical solution was developed and validated, numerically and experimentally, to describe the load-deflection response of perforated membranes to quasi-point loads. The proposed function was used to determine the internal stress of the investigated membranes; the relative error between the predicted and calculated stress values was in the range 2.1–8.5%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/317183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact