In this paper, we investigate the finite satisfiability and model checking problems for the logic D of the sub-interval relation under the homogeneity assumption, that constrains a proposition letter to hold over an interval if and only if it holds over all its points. First, we prove that the satisfiability problem for D, over finite linear orders, is PSPACE-complete; then, we show that its model checking problem, over finite Kripke structures, is PSPACE-complete as well.

Satisfiability and Model Checking for the Logic of Sub-Intervals under the Homogeneity Assumption

Alberto Molinari
;
2017-01-01

Abstract

In this paper, we investigate the finite satisfiability and model checking problems for the logic D of the sub-interval relation under the homogeneity assumption, that constrains a proposition letter to hold over an interval if and only if it holds over all its points. First, we prove that the satisfiability problem for D, over finite linear orders, is PSPACE-complete; then, we show that its model checking problem, over finite Kripke structures, is PSPACE-complete as well.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/316377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact