In this talk we review recent progress on our understanding of the nonperturbative phenomenon of mass generation in non-Abelian gauge theories, and the way it manifests itself at the level of the gluon propagator, thus establishing a close contact with a variety of results obtained in large-volume lattice simulations. The key observation is that, due to an exact cancellation operating at the level of the Schwinger-Dyson equations, the gluon propagator remains rigorously massless, provided that the fully-dressed vertices of the theory do not contain massless poles. The inclusion of such poles activates the well-known Schwinger mechanism, which permits the evasion of the aforementioned cancellation, and accounts for the observed infrared finiteness of the gluon propagator both in the Landau gauge and away from it.

Mass generation in Yang-Mills theories

D. Binosi;
2017-01-01

Abstract

In this talk we review recent progress on our understanding of the nonperturbative phenomenon of mass generation in non-Abelian gauge theories, and the way it manifests itself at the level of the gluon propagator, thus establishing a close contact with a variety of results obtained in large-volume lattice simulations. The key observation is that, due to an exact cancellation operating at the level of the Schwinger-Dyson equations, the gluon propagator remains rigorously massless, provided that the fully-dressed vertices of the theory do not contain massless poles. The inclusion of such poles activates the well-known Schwinger mechanism, which permits the evasion of the aforementioned cancellation, and accounts for the observed infrared finiteness of the gluon propagator both in the Landau gauge and away from it.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/315789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact