Action recognition pipelines that use Recurrent Neural Networks (RNN) are currently 5–10% less accurate than Convolutional Neural Networks (CNN). While most works that use RNNs employ a 2D CNN on each frame to extract descriptors for action recognition, we extract spatiotemporal features from a 3D CNN and then learn the temporal relationship of these descriptors through a stacked residual recurrent neural network (Res-RNN). We introduce for the first time residual learning to counter the degradation problem in multi-layer RNNs, which have been successful for temporal aggregation in two-stream action recognition pipelines. Finally, we use a late fusion strategy to combine RGB and optical flow data of the two-stream Res-RNN. Experimental results show that the proposed pipeline achieves competitive results on UCF-101 and state of-the-art results for RNN-like architectures on the challenging HMDB-51 dataset.

Residual Stacked RNNs for Action Recognition

Lakhal, Mohamed;Escalera, Sergio
;
Lanz, Oswald
;
2018-01-01

Abstract

Action recognition pipelines that use Recurrent Neural Networks (RNN) are currently 5–10% less accurate than Convolutional Neural Networks (CNN). While most works that use RNNs employ a 2D CNN on each frame to extract descriptors for action recognition, we extract spatiotemporal features from a 3D CNN and then learn the temporal relationship of these descriptors through a stacked residual recurrent neural network (Res-RNN). We introduce for the first time residual learning to counter the degradation problem in multi-layer RNNs, which have been successful for temporal aggregation in two-stream action recognition pipelines. Finally, we use a late fusion strategy to combine RGB and optical flow data of the two-stream Res-RNN. Experimental results show that the proposed pipeline achieves competitive results on UCF-101 and state of-the-art results for RNN-like architectures on the challenging HMDB-51 dataset.
2018
978-3-030-11011-6
File in questo prodotto:
File Dimensione Formato  
10.1007@978-3-030-11012-340.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/315343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact