In this talk we will revisit earlier work on people/object tracking and show how it can be framed into a coherent picture within a modern deep learning approach. We will consider invariance and equivariance as mathematical principles to derive our recurrent deep network architecture for multi-object tracking.

Learning to Track (extended abstract of MCV18 invited talk)

Lanz, Oswald
2018-01-01

Abstract

In this talk we will revisit earlier work on people/object tracking and show how it can be framed into a coherent picture within a modern deep learning approach. We will consider invariance and equivariance as mathematical principles to derive our recurrent deep network architecture for multi-object tracking.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/315186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact