Local image features are generally robust to different geometric and photometric transformations on planar surfaces or under narrow baseline views. However, the matching performance decreases considerably across cameras with unknown poses separated by a wide baseline. To address this problem, we accumulate temporal information within each view by tracking local binary features, which encode intensity comparisons of pixel pairs in an image patch. We then encode the spatio-temporal features into fixed-length binary descriptors by selecting temporally dominant binary values. We complement the descriptor with a binary vector that identifies intensity comparisons that are temporally unstable. Finally, we use this additional vector to ignore the corresponding binary values in the fixed-length binary descriptor when matching the features across cameras. We analyse the performance of the proposed approach and compare it with baselines.

Multi-camera Matching of Spatio-Temporal Binary Features

Xompero, Alessio;Lanz, Oswald;
2018-01-01

Abstract

Local image features are generally robust to different geometric and photometric transformations on planar surfaces or under narrow baseline views. However, the matching performance decreases considerably across cameras with unknown poses separated by a wide baseline. To address this problem, we accumulate temporal information within each view by tracking local binary features, which encode intensity comparisons of pixel pairs in an image patch. We then encode the spatio-temporal features into fixed-length binary descriptors by selecting temporally dominant binary values. We complement the descriptor with a binary vector that identifies intensity comparisons that are temporally unstable. Finally, we use this additional vector to ignore the corresponding binary values in the fixed-length binary descriptor when matching the features across cameras. We analyse the performance of the proposed approach and compare it with baselines.
File in questo prodotto:
File Dimensione Formato  
2018_FUSION_MultiCameraMatchingOfSpatioTemporalBinaryFeatures_Xompero_Lanz_Cavallaro.pdf

solo utenti autorizzati

Descrizione: CRC
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/315170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact