Despite that the majority of machine learning approaches aim to solve binary classification problems, several real-world applications require specialized algorithms able to handle many different classes, as in the case of single-label multi-class and multi-label classification problems. The Label Ranking framework is a generalization of the above mentioned settings, which aims to map instances from the input space to a total order over the set of possible labels. However, generally these algorithms are more complex than binary ones, and their application on large-scale datasets could be untractable. The main contribution of this work is the proposal of a novel general on-line preference-based label ranking framework. The proposed framework is able to solve binary, multi-class, multi-label and ranking problems. A comparison with other baselines has been performed, showing effectiveness and efficiency in a real-world large-scale multi-label task.
Learning Preferences for Large Scale Multi-label Problems
Ivano Lauriola
;Alberto Lavelli;Rinaldi, Fabio;
2018-01-01
Abstract
Despite that the majority of machine learning approaches aim to solve binary classification problems, several real-world applications require specialized algorithms able to handle many different classes, as in the case of single-label multi-class and multi-label classification problems. The Label Ranking framework is a generalization of the above mentioned settings, which aims to map instances from the input space to a total order over the set of possible labels. However, generally these algorithms are more complex than binary ones, and their application on large-scale datasets could be untractable. The main contribution of this work is the proposal of a novel general on-line preference-based label ranking framework. The proposed framework is able to solve binary, multi-class, multi-label and ranking problems. A comparison with other baselines has been performed, showing effectiveness and efficiency in a real-world large-scale multi-label task.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.