Recent work on multilingual neural machine translation reported competitive performance with respect to bilingual models and surprisingly good performance even on (zeroshot) translation directions not observed at training time. We investigate here a zero-shot translation in a particularly lowresource multilingual setting. We propose a simple iterative training procedure that leverages a duality of translations directly generated by the system for the zero-shot directions. The translations produced by the system (sub-optimal since they contain mixed language from the shared vocabulary), are then used together with the original parallel data to feed and iteratively re-train the multilingual network. Over time, this allows the system to learn from its own generated and increasingly better output. Our approach shows to be effective in improving the two zero-shot directions of our multilingual model. In particular, we observed gains of about 9 BLEU points over a baseline multilingual model and up to 2.08 BLEU over a pivoting mechanism using two bilingual models. Further analysis shows that there is also a slight improvement in the non-zero-shot language directions.

Improving Zero-Shot Translation of Low-Resource Languages

Surafel M. Lakew;Quintino F. Lotito;Matteo Negri;Marco Turchi;Marcello Federico
2017-01-01

Abstract

Recent work on multilingual neural machine translation reported competitive performance with respect to bilingual models and surprisingly good performance even on (zeroshot) translation directions not observed at training time. We investigate here a zero-shot translation in a particularly lowresource multilingual setting. We propose a simple iterative training procedure that leverages a duality of translations directly generated by the system for the zero-shot directions. The translations produced by the system (sub-optimal since they contain mixed language from the shared vocabulary), are then used together with the original parallel data to feed and iteratively re-train the multilingual network. Over time, this allows the system to learn from its own generated and increasingly better output. Our approach shows to be effective in improving the two zero-shot directions of our multilingual model. In particular, we observed gains of about 9 BLEU points over a baseline multilingual model and up to 2.08 BLEU over a pivoting mechanism using two bilingual models. Further analysis shows that there is also a slight improvement in the non-zero-shot language directions.
File in questo prodotto:
File Dimensione Formato  
Improving-Zero-Shot-Translation-of-Low-Resource-Languages.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 299.34 kB
Formato Adobe PDF
299.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/313116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact