Convolutional neural networks have achieved extraordinary results in many computer vision and pattern recognition applications; however, their adoption in the computer graphics and geometry processing communities is limited due to the non-Euclidean structure of their data. In this paper, we propose Anisotropic Convolutional Neural Network (ACNN), a generalization of classical CNNs to non-Euclidean domains, where classical convolutions are replaced by projections over a set of oriented anisotropic diffusion kernels. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes, a fundamental problem in geometry processing, arising in a wide variety of applications. We tested ACNNs performance in challenging settings, achieving state-of-the-art results on recent correspondence benchmarks.
Learning shape correspondence with anisotropic convolutional neural networks
Boscaini, Davide;
2016-01-01
Abstract
Convolutional neural networks have achieved extraordinary results in many computer vision and pattern recognition applications; however, their adoption in the computer graphics and geometry processing communities is limited due to the non-Euclidean structure of their data. In this paper, we propose Anisotropic Convolutional Neural Network (ACNN), a generalization of classical CNNs to non-Euclidean domains, where classical convolutions are replaced by projections over a set of oriented anisotropic diffusion kernels. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes, a fundamental problem in geometry processing, arising in a wide variety of applications. We tested ACNNs performance in challenging settings, achieving state-of-the-art results on recent correspondence benchmarks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.