Complex heartbeat dynamics is known to reflect subject’s emotional state, thanks to numerous links to brain cortical and subcortical regions. Likewise, specific brain regions are deeply involved in vagally-mediated emotional processing and regulation. Nevertheless, although the brain-heart interplay has been studied during visual emotion elicitation, directional interactions have not been investigated so far. To fill this gap, in this study we investigate brain-heart dynamics during emotional elicitation in healthy subjects through measures of Granger causality (GC) between the two physiological systems. Data were gathered from 22 healthy volunteers who underwent pleasant/unpleasant affective elicitation using pictures from the International Affective Picture System. Neutral emotional stimuli were elicited as well. High density electroencephalogram (EEG) signals were processed to obtain time-varying maps of cortical activation, whereas the associated instantaneous cardiovascular dynamics was estimated through inhomogeneous point-process models. Concerning the information transfer brain-to-heart, GE highlighted significant valence-dependent lateralization with respect to resting states. Furthermore, as a proof of concept, the study of heart-to-brain dynamics considering EEG oscillations in the γ band (30-45 Hz) highlighted differential information transfer between neutral and positive elicitations directed to the prefrontal cortex.

Causal brain-heart information transfer during visual emotional elicitation in healthy subjects: preliminary evaluations and future perspectives

Faes, Luca;
2017-01-01

Abstract

Complex heartbeat dynamics is known to reflect subject’s emotional state, thanks to numerous links to brain cortical and subcortical regions. Likewise, specific brain regions are deeply involved in vagally-mediated emotional processing and regulation. Nevertheless, although the brain-heart interplay has been studied during visual emotion elicitation, directional interactions have not been investigated so far. To fill this gap, in this study we investigate brain-heart dynamics during emotional elicitation in healthy subjects through measures of Granger causality (GC) between the two physiological systems. Data were gathered from 22 healthy volunteers who underwent pleasant/unpleasant affective elicitation using pictures from the International Affective Picture System. Neutral emotional stimuli were elicited as well. High density electroencephalogram (EEG) signals were processed to obtain time-varying maps of cortical activation, whereas the associated instantaneous cardiovascular dynamics was estimated through inhomogeneous point-process models. Concerning the information transfer brain-to-heart, GE highlighted significant valence-dependent lateralization with respect to resting states. Furthermore, as a proof of concept, the study of heart-to-brain dynamics considering EEG oscillations in the γ band (30-45 Hz) highlighted differential information transfer between neutral and positive elicitations directed to the prefrontal cortex.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/311487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact