A transport network for 5G envisions integrating the fronthaul and backhaul segments (namely 5G-Crosshaul) into a single transport network. This requires a fully integrated and unified management of fronthaul and backhaul resources in a sharable, scalable and flexible way. The integrated and unified management of the transport network resources follows the Software Defined Networking (SDN) principles of centralization, decoupling between control and data plane and application ecosystem. Innovation to enable context-aware resource management and to provide system-wide optimization of QoS, as well as energy related objectives, lies on defining key applications as logical decision entities to program the underlying network and packet forwarding behaviour. This paper presents a set of 5G-Crosshaul SDN applications with the scope of (i) managing the 5G-Crosshaul resources, including not only network but also computing and storage resources, and (ii) offering efficient media distribution and traffic offloading solutions. In order to develop these applications in a real system, we identify the interactions between the applications and the control plane. Based on these interactions, we propose a two-layer application plane and specify the requirements of the applications on the Northbound Interface (NBI) of the control plane.

Innovations Through 5G-Crosshaul Applications

Siracusa, Domenico;Goratti, Leonardo;
2016-01-01

Abstract

A transport network for 5G envisions integrating the fronthaul and backhaul segments (namely 5G-Crosshaul) into a single transport network. This requires a fully integrated and unified management of fronthaul and backhaul resources in a sharable, scalable and flexible way. The integrated and unified management of the transport network resources follows the Software Defined Networking (SDN) principles of centralization, decoupling between control and data plane and application ecosystem. Innovation to enable context-aware resource management and to provide system-wide optimization of QoS, as well as energy related objectives, lies on defining key applications as logical decision entities to program the underlying network and packet forwarding behaviour. This paper presents a set of 5G-Crosshaul SDN applications with the scope of (i) managing the 5G-Crosshaul resources, including not only network but also computing and storage resources, and (ii) offering efficient media distribution and traffic offloading solutions. In order to develop these applications in a real system, we identify the interactions between the applications and the control plane. Based on these interactions, we propose a two-layer application plane and specify the requirements of the applications on the Northbound Interface (NBI) of the control plane.
2016
978-1-5090-2893-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/310745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact